Problem B#
The gas phase reaction A + B → C + D is examined in an ideally stirred batch reactor with a constant volume. At time t = 0 the reactor is rapidly filled with a mixture of equal amounts of A and B at a pressure of 100 kPa and a temperature of 25 °C. After one hour the concentration of A is measured as \(\frac{C_{A}}{C_{A0}}=0.15\). The reaction temperature is constant at 25 °C. The reaction follows the rate expression:
\(R = -r_{A}=-r_{B}=k{C_{A}}{C_{B}}\)
a) What is the relationship between \({C_{A}}\) and \({C_{B}}\)?
Since the initial concentrations of A and B are the same and the stoichiometry shows that when one mole of A is consumed so is one mole of B it follows that CA = CB. The common concentration of A and B will be called C in the following.
# Calculate initial concentration of A and B
C0 = # your code here
print(f'The initial concentration of A and B is: {C0} mol/m^3')
Cell In[1], line 3
C0 = # your code here
^
SyntaxError: invalid syntax
b) Compute the rate constant k. The gas can be considered ideal. The gas constant is \(R = 8.3144 Pa\cdot m^3/(mol\cdot K)\)
k = # your code here
print(f'The constant rate k is: {k} m^3/mol*s')
Cell In[2], line 1
k = # your code here
^
SyntaxError: invalid syntax
The activation energy \(E_a\) of the reaction is given by: \(E_a/R=10200 K\)
c) Calculate the rate constant at 100 °C
The gas constant is \(R = 8.3144 J/mol/K \)
import math
def rate_constant_100C(k, Ea_R, T1_kelvin, T2_kelvin):
k_100 = # your code here
return k_100
Ea_R = 10200 # activation energy in K
T2 = 100 # temperature in C
T2_kelvin = round(T2 + 273.15) # temperature in K
print(f'The rate constant at 100 C is: {rate_constant_100C(k, Ea_R, T1_kelvin, T2_kelvin)} m^3/mol*s')
Cell In[3], line 4
k_100 = # your code here
^
SyntaxError: invalid syntax